PRACTICE MIDTERM 1 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) Let f be a function and a, L real numbers. Define carefully: $\lim _{x \rightarrow a} f(x)=$ L if and only if...

For every number $\epsilon>0$ there is a number $\delta>0$ such that for all x in \mathbb{R},
if

$$
0<|x-a|<\delta
$$

then
$|f(x)-L|<\epsilon$
(b) Show directly from the definition that $\lim _{x \rightarrow 3} 2 x=6$

Let $f(x)=2 x$

Part I: Finding δ

1) $|f(x)-6|=|2 x-6|=|2(x-3)|=2|x-3|$
2) $2|x-3|<\epsilon$ implies $|x-3|<\frac{\epsilon}{2}$
3) Let $\delta=\frac{\epsilon}{2}$

Part II: Showing your δ works

1) Let $\epsilon>0$ be given. Let $\delta=\frac{\epsilon}{2}$, and suppose $0<|x-3|<\delta$. Then $|x-3|<\frac{\epsilon}{2}$
2) Then $|f(x)-6|=2|x-3|<2 \frac{\epsilon}{2}=\epsilon$
3) Hence, if $0<|x-3|<\delta$, then $|f(x)-6|<\epsilon$
2. Let $f(x)=\sqrt{x}$ for all x. Prove directly from the definition of the derivative that $f^{\prime}(a)=\frac{1}{2 \sqrt{a}}$

Solution 1:

$$
\begin{array}{rlrl}
f^{\prime}(a) & = & & \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& = & \lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \\
& = & \lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \times\left(\frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\right) \\
& = & \lim _{x \rightarrow a} \frac{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& = & & \lim _{x \rightarrow a} \frac{(\sqrt{x})^{2}-(\sqrt{a})^{2}}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& = & \lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& = & & \lim _{x \rightarrow a} \frac{1}{(\sqrt{x}+\sqrt{a})} \\
& = & & \frac{1}{\sqrt{a}+\sqrt{a}} \\
& = & & \frac{1}{2 \sqrt{a}}
\end{array}
$$

Solution 2:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h} \times \frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{a+h}-\sqrt{a})(\sqrt{a+h}+\sqrt{a})}{h(\sqrt{a+h}+\sqrt{a})} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{a+h})^{2}-(\sqrt{a})^{2}}{h(\sqrt{a+h}+\sqrt{a})} \\
& =\lim _{h \rightarrow 0} \frac{a+h-a}{h(\sqrt{a+h}+\sqrt{a})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{a+h}+\sqrt{a})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{a+h}+\sqrt{a}} \\
& =\frac{1}{\sqrt{a+0}+\sqrt{a}} \\
& =\frac{1}{\sqrt{a}+\sqrt{a}} \\
& =\frac{1}{2 \sqrt{a}}
\end{aligned}
$$

3. Let $f(x)=\sqrt{3-e^{2 x}}$
(a) Explain why f is one-to-one

Solution 1:

$$
\begin{aligned}
f(x) & =f(y) \\
\sqrt{3-e^{2 x}} & =\sqrt{3-e^{2 y}} \\
3-e^{2 x} & =3-e^{2 y} \\
e^{2 x}=e^{2 y} & \\
\ln \left(e^{2 x}\right)=\ln \left(e^{2 y}\right) & \\
2 x=2 y & \\
x=y &
\end{aligned}
$$

Hence f is one-to-one.
Solution 2: $e^{2 x}$ is increasing, so $-e^{2 x}$ is decreasing, so $3-e^{2 x}$ is decreasing, and hence $f(x)=\sqrt{3-e^{2 x}}$ is (strictly) decreasing (as a composition of an increasing and a decreasing function). And hence f is one-to-one.
(b) What is the domain of f^{-1} ?

Solution 1: Using our formula for f^{-1} in question (c), we see that we need $3-x^{2}>0$ (we want the number under the \ln to be positive), so $x^{2}<3$, so $-\sqrt{3}<x<\sqrt{3}$. However, notice that we also want $x \geq 0$ (because $f(x) \geq 0$), so Domain $f^{-1}=[0, \sqrt{3})$.

Solution 2:

First, let's find the domain of f (this will be useful in a second). The only thing we need is that $3-e^{2 x} \geq 0$ (the number under the square root be nonnegative)

$$
\begin{gathered}
3-e^{2 x} \geq 0 \\
-e^{2 x} \geq-3 \\
e^{2 x} \leq 3 \\
2 x \leq \ln (3) \\
x \leq \frac{\ln (3)}{2}
\end{gathered}
$$

So the domain of f is $\left(-\infty, \frac{\ln (3)}{2}\right]$
Now, because f is decreasing, and $f\left(\frac{\ln (3)}{2}\right)=0$ and $\lim _{x \rightarrow-\infty} f(x)=\sqrt{3}$, we get that the range of f is $[0, \sqrt{3})$. But the range of f is the domain of f^{-1},
so Domain of $f^{-1}=[0, \sqrt{3})$
(c) Find a formula for f^{-1}

1) Let $y=\sqrt{3-e^{2 x}}$
2)

$$
\begin{aligned}
y & =\sqrt{3-e^{2 x}} \\
y^{2} & =3-e^{2 x} \\
y^{2}-3 & =-e^{2 x} \\
3-y^{2} & =e^{2 x} \\
e^{2 x} & =3-y^{2} \\
2 x & =\ln \left(3-y^{2}\right) \\
x & =\frac{\ln \left(3-y^{2}\right)}{2}
\end{aligned}
$$

3) $f^{-1}(x)=\frac{\ln \left(3-x^{2}\right)}{2}$
4. A- Problem 3 on page 127
(a) -4 (f not defined at -4$), \boxed{-2}\left(\lim _{x \rightarrow-2} f(x)\right.$ does not exist), 2 (ditto), 4 (ditto)
(b) - -4: Neither

- -2: Continuous from the left
- 2: Continuous from the right
- 4: Continuous from the right

B- Problem 37 on page 164

- -4 : Graph has a 'kink' at -4 (left-hand-side limits and right-handside limits not equal)
- 0 : Not continuous at 0

C- Problem 39 on page 164

- -1 : Vertical tangent line at -1
- 4: Graph has a 'kink' at 4

5. Compute:
(a) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}$

We have $\lim _{x \rightarrow 3^{+}} x^{2}-9=0$ by continuity of $y=x^{2}-9$ while $\lim _{x \rightarrow 3^{+}} x^{2}+$ $2 x-3=3^{2}+2(3)-3=9+6-3=12$ by continuity of $y=x^{2}+2 x-3$, and hence:

$$
\lim _{x \rightarrow 3^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}=\frac{0}{12}=0
$$

(b)

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-2 x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)(x+1)}=\lim _{x \rightarrow 3} \frac{x+3}{x+1}=\frac{3+3}{3+1}=\frac{6}{4}=\frac{3}{2}
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-9}}{2 x+5} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1-\frac{9}{x^{2}}\right)}}{2 x+5} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{1-\frac{9}{x^{2}}}}{2 x+5} \\
& =\lim _{x \rightarrow \infty} \frac{|x| \sqrt{1-\frac{9}{x^{2}}}}{2 x+5} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(\sqrt{1-\frac{9}{x^{2}}}\right)}{2 x+5} \quad \text { because } x>0 \\
& =\lim _{x \rightarrow \infty} \frac{x\left(\sqrt{1-\frac{9}{x^{2}}}\right)}{x\left(2+\frac{5}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1-\frac{9}{x^{2}}}}{\left(2+\frac{5}{x}\right)} \\
& =\frac{\sqrt{1-0}}{2+0} \\
& =\frac{1}{2}
\end{aligned}
$$

(d) First of all,

$$
\frac{\cot (2 t)}{t}=\frac{\frac{\cos (2 t)}{\sin (2 t)}}{t}=\frac{\cos (2 t)}{t(\sin (2 t))}
$$

Now $\lim _{t \rightarrow 0^{+}} \cos (2 t)=\lim _{t \rightarrow 0^{+}} \cos (2 t)=1$
And $\lim _{t \rightarrow 0^{+}} t(\sin (2 t))=0^{+}$and $\lim _{t \rightarrow 0^{-}} t(\sin (2 t))=0^{+}$(in the second case, it's because both t and $\sin (2 t)$ are negative!)

Hence:

$$
\lim _{t \rightarrow 0^{+}} \frac{\cot (2 t)}{t}=\lim _{t \rightarrow 0^{+}} \frac{\cos (2 t)}{t(\sin (2 t))}=\frac{1}{0^{+}}=\infty
$$

and

$$
\lim _{t \rightarrow 0^{-}} \frac{\cot (2 t)}{t}=\lim _{t \rightarrow 0^{-}} \frac{\cos (2 t)}{t(\sin (2 t))}=\frac{1}{0^{+}}=\infty
$$

And thus:

$$
\lim _{t \rightarrow 0} \frac{\cot (2 t)}{t}=\infty
$$

6. Compute:
(a)

$$
\frac{d}{d t}\left(t^{\frac{1}{3}} \sec (t)\right)=\frac{1}{3} t^{-\frac{2}{3}} \sec (t)+t^{\frac{1}{3}} \sec (t) \tan (t)
$$

(b)
$\frac{d}{d u}\left(\frac{u}{u^{2}+1}\right)=\frac{1 \cdot\left(u^{2}+1\right)-u \cdot(2 u)}{\left(u^{2}+1\right)^{2}}=\frac{u^{2}+1-2 u^{2}}{\left(u^{2}+1\right)^{2}}=\frac{1-u^{2}}{\left(u^{2}+1\right)^{2}}$
7. Find an equation for the line which is normal to the curve consisting of all points (x, y) satisfying $y=\frac{x e^{x}}{x^{2}+1}$ at the point $(0,0)$ on this curve.

The normal line goes through the point $(0,0)$ and has slope $-\frac{1}{y^{\prime}(0)}$ (the negative reciprocal of the slope of the tangent line to the graph at 0).

Now:

$$
y^{\prime}=\frac{\left(x e^{x}\right)^{\prime} \cdot\left(x^{2}+1\right)-x e^{x} \cdot(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{\left(e^{x}+x e^{x}\right)\left(x^{2}+1\right)-2 x^{2} e^{x}}{\left(x^{2}+1\right)^{2}}
$$

Hence:

$$
y^{\prime}(0)=\frac{\left(e^{0}+0 e^{0}\right)\left(0^{2}+1\right)-2(0)^{2} e^{0}}{\left((0)^{2}+1\right)^{2}}=\frac{(1)(1)}{(1)}=1
$$

And hence the equation of the normal line is:

$$
y-0=-\frac{1}{1}(x-0)
$$

That is: $y=-x$

8. Problem 50 on page 190

(a)

$$
P^{\prime}(2)=F^{\prime}(2) G(2)+F(2) G^{\prime}(2)=0 \times 2+3 \times \frac{1}{2}=\frac{3}{2}
$$

(b)
$Q^{\prime}(7)=\frac{F^{\prime}(7) G(7)-F(7) G^{\prime}(7)}{G(7)^{2}}=\frac{\frac{1}{4} \times 1-5 \times\left(-\frac{2}{3}\right)}{1^{2}}=\frac{1}{4}+\frac{10}{3}=\frac{43}{12}$

